Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Chem ; 68(1): 83-90, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1599228

ABSTRACT

BACKGROUND: Infections caused by fungi can be important causes of morbidity and mortality in certain patient populations, including those who are highly immunocompromised or critically ill. Invasive mycoses can be caused by well-known species, as well as emerging pathogens, including those that are resistant to clinically available antifungals. CONTENT: This review highlights emerging fungal infections, including newly described species, such as Candida auris, and those that having undergone taxonomic classification and were previously known by other names, including Blastomyces and Emergomyces species, members of the Rasamsonia argillacea species complex, Sporothrix brasiliensis, and Trichophyton indotinae. Antifungal resistance also is highlighted in several of these emerging species, as well as in the well-known opportunistic pathogen Aspergillus fumigatus. Finally, the increased recognition and importance of fungal co-infections with respiratory pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is discussed. SUMMARY: Both clinicians and clinical microbiology laboratories should remain vigilant regarding emerging fungal infections. These may be difficult both to diagnose and treat due to the lack of experience of clinicians and laboratory personnel with these organisms and the infections they may cause. Many of these fungal infections have been associated with poor clinical outcomes, either due to inappropriate therapy or the development of antifungal resistance.


Subject(s)
Antifungal Agents , Communicable Diseases, Emerging/epidemiology , Drug Resistance, Fungal , Mycoses , Antifungal Agents/pharmacology , COVID-19 , Communicable Diseases, Emerging/microbiology , Fungi/drug effects , Fungi/pathogenicity , Humans , Mycoses/drug therapy , Mycoses/epidemiology
2.
J Clin Microbiol ; 59(9): e0123021, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1501536

ABSTRACT

The global incidence of mucormycosis has increased in recent years owing to higher numbers of individuals at risk for these infections. The diagnosis and treatment of this aggressive fungal infection are of clinical concern due to differences in species distribution in different geographic areas and susceptibility profiles between different species that are capable of causing highly aggressive infections. The purpose of this study was to evaluate the epidemiology and susceptibility profiles of Mucorales isolates in the United States over a 52-month period. Species identification was performed by combined phenotypic characteristics and DNA sequence analysis, and antifungal susceptibility testing was performed by CLSI M38 broth microdilution for amphotericin B, isavuconazole, itraconazole, and posaconazole. During this time frame, 854 isolates were included, representing 11 different genera and over 26 species, of which Rhizopus (58.6%) was the predominant genus, followed by Mucor (19.6%). The majority of isolates were cultured from the upper and lower respiratory tracts (55%). Amphotericin B demonstrated the most potent in vitro activity, with geometric mean (GM) MICs of ≤0.25 µg/ml against all genera with the exception of Cunninghamella species (GM MIC of 1.30 µg/ml). In head-to-head comparisons, the most active azole was posaconazole, followed by isavuconazole. Differences in azole and amphotericin B susceptibility patterns were observed between the genera with the greatest variability observed with isavuconazole. Awareness of the epidemiology of Mucorales isolates and differences in antifungal susceptibility patterns in the United States may aide clinicians in choosing antifungal treatment regimens. Further studies are warranted to correlate these findings with clinical outcomes.


Subject(s)
Mucorales , Mucormycosis , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Fungi , Humans , Itraconazole , Microbial Sensitivity Tests , Mucormycosis/drug therapy , Mucormycosis/epidemiology , United States/epidemiology
3.
Curr Opin Infect Dis ; 33(4): 290-297, 2020 08.
Article in English | MEDLINE | ID: covidwho-641651

ABSTRACT

PURPOSE OF REVIEW: Although clinical outcomes in the treatment of aspergillosis have markedly improved with the availability of newer triazoles, the development of resistance to these antifungals, especially in Aspergillus fumigatus, is a growing concern. The purpose of this review is to provide an update on azole resistance mechanisms and their epidemiology in A. fumigatus, the clinical implications of azole resistance, and to discuss future treatment options against azole-resistant aspergillosis. RECENT FINDINGS: Resistance may develop through either patient or environmental azole exposure. Environmental exposure is the most prevalent means of resistance development, and these isolates can cause disease in various at-risk groups, which now include those with influenza, and potentially COVID-19. Although current treatment options are limited, newer therapies are in clinical development. These include agents with novel mechanisms of action which have in vitro and in vivo activity against azole-resistant A. fumigatus. SUMMARY: Azole-resistant A. fumigatus is an emerging threat that hampers our ability to successfully treat patients with aspergillosis. Certain geographic regions and patient populations appear to be at increased risk for this pathogen. As new patient groups are increasingly recognized to be at increased risk for invasive aspergillosis, studies to define the epidemiology and management of azole-resistant A. fumigatus are critically needed. While treatment options are currently limited, new agents under clinical development may offer hope.


Subject(s)
Antifungal Agents/pharmacology , Aspergillosis/immunology , Aspergillus fumigatus/immunology , Coronavirus Infections/immunology , Drug Resistance, Multiple, Fungal/immunology , Pneumonia, Viral/immunology , Triazoles/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillus fumigatus/drug effects , Betacoronavirus/immunology , COVID-19 , Environmental Exposure , Humans , Immunocompromised Host/immunology , Microbial Sensitivity Tests , Pandemics , SARS-CoV-2 , Triazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL